edexcel

Mark Scheme (Results)
Summer 2013

International GCSE
Physics (4PH0) Paper 2P

Edexcel Level 1/Level 2 Certificate Physics (KPHO) Paper 2P

Edexcel and BTEC Qualifications
Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.

Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG037250
All the material in this publication is copyright
(c) Pearson Education Ltd 2013

Question number	Answer	Notes	Marks
1 (a) (i) (ii)	$\begin{aligned} & \text { C (decreases by 2) } \\ & \text { D (decreases by 4) } \end{aligned}$		1 1
(b)	D (has less penetrating power)		1
(c)	Any four of: MP1 Use of ratemeter / scaler / counter; MP2 Idea of measuring background radiation e.g. background count / correction /subtraction; MP3 A safety precaution (based on distance or absorption) e.g. use of tongs / shielding; MP4 A controlled variable (time / distance / positioning) e.g. "source near/by/to detector", "for a minute"; MP5 A practical consideration e.g. repeat / average / reset (scaler); MP6 Mention of becquerel / Bq	Allow description e.g. "count the clicks" Allow Geiger counter Ignore GM detector or tube Ignore descriptions of GM tube Allow "stand back", "wear gloves / protective clothing" "do not point source at people" Ignore "counts per minute" Ignore: mention of anomalies Accept phonetic spellings	4

Total for question 1 = 7 marks

Question number	Answer	Notes	Marks
$\begin{array}{\|lll} \hline 2 & \text { (a) } \end{array}$ (ii)	Power (rating) or watt(s); Rate of energy transfer / joule per second / J/s ; Any two of MP1 Idea of a fault causing a hazard; MP2 Idea that current goes to Earth / not to user; MP3 Idea of fuse action, e.g. blows /melts / breaks circuit; MP4 idea of a low resistance path;	Ignore equation from p2: energy (transferred) time (taken) Ignore: current surge, fire Allow: - prevents electrocution / shock - flow of charge as current - current to ground Ignore: electricity / energy goes to earth Allow case at earth potential	2
(b) (i)	Agree / disagree - no mark Any three of MP1 Statement of an appropriate equation e.g. power = current x voltage; MP2 At least one appropriate current value calculated, e.g. 2.92 (A) or 0.13 (A); MP3 Idea that fuse rating must be more than working current; MP4 EITHER Idea that 2.92 A is close to 3 A , making 3 A fuse a poor choice for soldering iron ' B '; OR Idea that 3 A is much larger than 0.13 A , making 3A fuse a poor choice for soldering iron ' A '	Allow abbreviation and rearrangements e.g. $P=I V, I=P / V$ Ignore s.f. $\begin{aligned} & 30 \div 230=0.13(\mathrm{~A}) \\ & 70 \div 24=2.9(\mathrm{~A}) \end{aligned}$ Allow $70 \div 230=0.30(\mathrm{~A})$ Allow reverse arguments, e.g. "lower value fuse would melt" Allow ecf from incorrect calculation	3

Total for question 2 = 10 marks

Question number	Answer	Notes	Marks
3 (a) (i)	90 (K)		1
(ii)	Any three of MP1 Idea that particles/molecules move apart; MP2 Idea that particles/molecules gain (kinetic) energy; MP3 Idea that particles/molecules move more freely; MP4 Idea that particles/molecules leave the liquid;	Ignore: molecules vibrate Allow: molecules spread out, take up more space May be shown on labelled diagram Allow: idea of moving faster Ignore : 'move more' Allow bonds break Ignore unqualified 'move more' Allow escape Ignore evaporate	3
(b) (i) (ii)	Any two of MP1 radiation / infrared; MP2 Idea of reflection; MP3 Idea of little/no absorption; MP4 Idea of poor emission; Any two of (in a vacuum there are) no atoms/molecules/particles; so no/poor conduction; so no/little convection (currents);	Allow IR Allow bad radiator Allow: no 'medium' no 'material' There are no molecules to conduct $=2$ marks There are no molecules to convect = 2 marks	2

(c)	Any two of MP1 Idea that there is cold gas/air/oxygen just above the liquid (surface); MP2 Idea that the gas/air/oxygen in the room is warmer; MP3 Idea that convection currents in air (above liquid surface) unlikely;	Allow: warm air won't fall, cool air won't rise lgnore density arguments Allow: gas is a poor conductor	Allow: flask would burst if it had a lid	

Total for question $3=10$ marks

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
4 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\text { Momentum = mass } x \text { velocity }
\] \\
Substitution into correct equation; Calculation;
\[
\text { e.g. } 17000 \times 13
\]
\[
220000(\mathrm{~kg} \mathrm{~m} / \mathrm{s})
\]
\end{tabular} \& \begin{tabular}{l}
Allow abbreviations and rearrangements e.g. \(p=m v\), mass \(=\frac{\text { momentum }}{\text { velocity }}\) \\
Allow 221000
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Answers should be in the context of momentum \\
(when the lorry stops) the load still has momentum; \\
Idea that lorry stops in a shorter time; OR \\
Idea that load takes more time to stop; \\
MP1 \\
Centre of gravity is closer to the front of the lorry; \\
MP2 \\
Clockwise and anticlockwise moments equal; \\
MP3 \\
Increase in force related to decrease in distance (to provide balancing moment);
\end{tabular} \& \begin{tabular}{l}
Allow:
\[
(m v-m u)=F t
\] \\
Allow for TWO marks lorry loses momentum more quickly;; OR load loses momentum more slowly;; \\
Ignore action and reaction arguments Allow: centre of mass nearer front of lorry there is more weight near the front of the lorry / near B C of G further from rear (wheel) Allow: \\
- Moments are balanced \\
- total moment \(=0\)
\end{tabular} \& 2

3

\hline | (c) (i) 1 |
| :--- |
| (ii)2 | \& | $\text { Pressure }=\frac{\text { force }}{\text { area }}$ |
| :--- |
| Substitution into correctly rearranged formula; Calculation; $\text { e.g. } 53000 \div 390000$ $0.14\left(\mathrm{~m}^{2}\right)$ | \& | Allow abbreviations and rearrangements, e.g. $P=F / A$, force $=$ pressure x area |
| :--- |
| $\begin{array}{ll}0.136 & 0.135897\end{array}$ |
| Allow $1400 \mathrm{~cm}^{2}$ | \& 1

2

\hline
\end{tabular}

Total for question $4=11$ marks

Question number		Answer	Notes	Marks
5 (a) (i) (ii)		C (the same speed in free space) B (there must be a current in the circuit)		1 1
(b) (i) (ii) (iii)		Voltmeter connected in parallel with any circuit component; Component chosen is the LED; Axes labelled- quantity and unit ; Linear scale such that longest bar occupies at least half the grid; Plotting---ignore order of bars 5 bars correctly plotted;; If only 3 bars correctly plotted allow 1 mark for plotting Student is right/wrong - no mark Any two of MP1 idea that the visible spectrum is a sequence, with the end colours identified; MP2 Colour correctly related to wavelength (e.g. red has longest wavelength); MP3 Colour correctly related to voltage (e.g. blue needs highest voltage);	Ignore a line through the voltmeter symbol voltage in V (or V/V) AND all bars (or points) labelled Ignore orientation Allow non-zero origin Bar length plotted to nearest $1 / 2$ small square ALL data plotted correctly as floating "x's" gets only one mark for plotting Reject both plotting marks if a line graph is drawn (only scale and axes marks are available in this case) Red to blue (start either end) Allow ROYGBIV etc Wavelength (or frequency) correctly related to voltage $=2$ marks, e.g. f increases with V λ increases with $1 / V$	2

Total for question $5=10$ marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 6 (a) \& C (kinetic energy to electrical energy) \& \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Conversion to seconds; \\
Substitution into correctly rearranged equation; Calculation;
\[
\begin{aligned}
\& \text { e.g. (time }=) 60(\mathrm{~s}) \\
\& \frac{39000000}{(490 \times 60)} \\
\& 1300(\mathrm{~V})
\end{aligned}
\] \\
Any four of MP1 (High voltage leads to) low current; \\
MP2 mention of a relevant equation e.g. \(P=I V\), \(\mathrm{P}=\mathrm{I}^{2} \mathrm{R}\); \\
MP3 Less energy is lost (from the wires); \\
MP4 More efficient; \\
MP5 can use thinner wires;
\end{tabular} \& \begin{tabular}{l}
No mark for stating the formula, since \(\mathrm{E}=\mathrm{I} \mathrm{xV} \mathrm{xt}\) is given on page 2 \\
60 seen in working \\
1330, 1327, 1326.5 (V) \\
Correct answer without working scores full marks \\
Allow 1.3 kV for THREE marks \\
Allow Power of Ten error, for a maximum of TWO marks e.g. \(1.326 \times 10^{-3}, 1.33,130\) \\
Allow less heat loss \\
Ignore cost argument \\
Allow: \\
Can transmit the energy further
\end{tabular} \& 3

4
4

\hline | (c) (i) |
| :--- |
| (ii) | \& | Current that changes direction (continuously); 100 times per second; |
| :--- |
| Transformers change the voltage / current; |
| Transformers use alternating current / a.c.; | \& | Allow switches from +ve to -ve. |
| :--- |
| Allow 50 times/cycles per second. |
| Allow time period e.g. |
| $0.01 \mathrm{~s}, 0.02 \mathrm{~s}, 1 / 50 \mathrm{~s}$ |
| Allow step-up, step- |
| down |
| Allow reverse argument | \& 2

2

\hline
\end{tabular}

Total for question 6 = 12 marks

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG037250 Summer 2013

Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

